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Abstract 
A tbeory of deformation (homcomorphism but non-isomorphism) of topological groups 
is developed. In particular, a theory of deformation of subgroups structure is considered. 
The whole formalism is based on conceptions of holonomicity and relati~e geometry. 

A field is postulated to deform the symmetry group of a free physical system, it is 
shown that the classical fields deform the Poincarr group. Thanks to this fact, gravitation 
appears as space-time curvature (non-holonomicity of the Lorentz subgroup mapping); 
and electromagnetism reveals itself by space-time torsion (non-holonoraicity of the 
translation subgroup mapping). From physically evident premises it follo~ that space- 
time also has a torsion in the rotating and accelerated systems of reference. 

1. Introduction 

in spite ofsignificant progress and rapid development of  group-theoretical 
methods in physics, field description in frames of  this formalism is still an 
unsolved problem. Reference to the theory ofcompensating fields (Utiyama, 
1956; Sakyrai, 1960) can only affirm this statement. The difficulty is that 
the theory o f  compensating fields deals with a Lagrangian which firstly 
is not a group-theoretical construction and secondly it has been criticised 
for various other reasons (Chew, 1961). The remarks made concern all 
the Lagrangian methods of  description of  interactions. The following 
question may arise in this connection: 'Is it possible, whilst staying in the 
frames o f  group-theoretical formalism, being based only on the equations 
o f  motion in a field, to say something essential about the field itself?" 

Let the state o f  a physical system have a symmetry group under space- 
time, dynamical and isotopical variables when there is not an interaction, 
or  when one neglects it. Then it is obvious that the interaction breaks down 
some of  these symmetries, to 'eliminate corresponding degeneracies of  the 
physical system'. This results in two means for the description of  inter- 
actions. 

In the first place one can study 'contraction' of  a free-system symmetry 
group into a group of  the (retained) symmetries of  the interacting system. 

Secondly, a free-system symmetry group 'deformation' can be investi- 
gated in a group including the rest of  the symmetries. 
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Usually, one chooses the first way, in which the interaction itself is 
excluded from group-theoretical consideration. To compensate for this, 
Lagrangian, Hamiltonian or S-matrix, invariant under some sTmmetry 
group, are postulated. That is why an answer to the question is possible 
only on the basts of  the second technique, to which less attention has bccn 
paid. 

Most likely, this is explicable by the absence of  an effective theory of  
arbitrary groups. In the case considered, the problem is somewhat simplified 
if  one implies a phystcal field as an interaction defined on space-time 
(Streater & Wightman, 1964).t Here it is necessary to study a deformation 
of  free space-time motion group into an arbitrary topological group. 

Unfortunately, one has to refuse both the theory of  differentiable 
manifolds (Bishop & Critenden, 1964) (because of  too strict demands of  
differentiability) and the theory of fiber bundles (due to the "parallel 
displacement" concept and other essentially non-group theoretical con- 
structions on which this theory is based). 

It then becomes clearer why the major part of  the work suggested, 
concerns the development of  the mathematical aspects of  group deformation 
theory which allows one to describe properties of  a given group relative to 
a topologically equivalent Lie group. Hence the concept of  "relative 
geometry' naturally arises. 

A t  the next stage, the immersion of  the group deformation theory in 
physics gives the possibility of  formulation of  the theory of  relativity as a 
relative geometry of  a given field. 

To illustrate this, attempts are made to show that the classical theory of  
relativity can be considered as the relative geometry of  the Poincare group 
deformation. Besides cun'ature, a torsion also appears here, which manifests 
itself in an accelerated reference system and is due to the electromagnetic 
field. 

2. Ho!onomicity of Topological Groups 

Speaking about topo!ogical groups we shall assume everywhere in this 
paper that they are linearly connected. It means that any clement G from 
the topological group ~ can be connected with the unit E through a one- 
parameter subgroup ~r which is given by some continuous mapping: 

G = G(X~ ' . . . . .  X = - '  ) ( Z l )  

The mapping G(-) is determined on a curve X(O) in the number space 

It follows from definition o f  the subgroup ~ ,  that for any X = X(a) 
and ~ = ~g(o ~ a point ~ = X(o') can be found on the same curve providing 

C(0 = G(O-C- t (x )  (Z2)  

f This interaction is defined immediately at each point or by means of functions defined 
at each point of space-tlme. 
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where 

CKO --* E if s ~ ~ X (2.3) 

The mapping G(-) will be called formation of the subgroup ~ and 
K-dimension vector space ~ will be parametric space. When ~" is a Lie 
group the formation of its any subgroup may be extended to differentiable 
mapping of the parametric space proper onto the whole group (Pontryagin, 
1959). Since the continuous symmetries are described by Lie groups, a 
breakdown of symmetries must break down the formation differentiability. 
The following effects will be investigated below. 

A small translation (differential) d x in pa~metric space .~ induces the 
differential of forma'5on 

DG0c) = 6(X + dx) - 6(x) (2.4) 

and the differential of the group which will be defined as follows 

-~(X) = a(X + dx)- G-'(X) (2.S) 

Some differentiation rules for the topological groups are deduced in the 
Appendix. It is useful to introduce the truncated differential dG as 

de(x )  = E + dc~) (2.6) 
where for an additive group 

E -- 0; dG = dG = DG (2.6a) 

and for a multiplicative one 

dG(X ) = DG(x). G-n(~) (2.6b) 

Due to the continuity of formation of the ~" and with d X small, the 
truncated differential of group dG is approximated to by the linear function 
of parameter differential 

dG(x) ~ O,(x).dx' (2.7) 

where G, will be called a generator of the group. All the properties of the 
group are defined locally at a given value of parameters and can be different 
at different points of parametric space -~.t 

If ~ is a Lie group, then for additive and multiplicative group structure, 
in view of (2.6) and (2.7) we have 

. 8G_ , 67',=~; G, =~c,- ('z8) 
from which analyticity of Lie group generators follows. G,(0)- GI ~ is 
called an infinitesimal operator ofgroup (Neimark, 1963). 

t Later. this will always be meant, though corresponding marks will often be omitted. 
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Let us now consider a holonomy operator in the topological group r~: 

[~; d] G(X) - ~G-=(X). da-J(X + $X). 8G(x + dx). dG(x) (2.9) 

where 8 x, d x ~ ;  dG -= =(dO") -=. Since the transitivity of the group in 
eigenspacr means [8 ;d] G E ~r and because of (2.5) 

a(x + ,ix) = da(x), aOc) (2.1o) 

then it is easily seen that the holonomy operator [8;d] determines the 
change of the group: F(X)= [8;d]G(x).G(x) when a (closed) circuit in 
parametric space has been passed. A set of holonomy operators 9~" ~ [8;d] 
forms, as E. Caftan (1927a) noted, a group1" which, as will be shown below, 
is a mapping group of Lie algebra of Lie group. 

To prove this, an approximation to (2.9) must be made with the accuracy 
up to the second-order of 8G, dG. Using the formulas of the Appendix, 
namely, substituting (A4)+(A6),-(A8)+(AI1)  into (2.9), we have a 
simple expression for a holonomy operator 

[8;dlG = E+ [Sa, dG] - [8,dlG + 03 (2.11) 

where all the values are already taken at one point X e -~; O; includes the 
terms of the third and higher orders of 3G, dG; the commutator brackets 
act by the usual rules: 

[SG, dG] = 8G.dG - dG.SG; [8,d] G = 8dG- ardG (2.12) 

Substitution of (2.7) and (A7) into (2.11) gives a generator of the group 

G~,;l] = [G=, Gt] + Gu.= ] (2.13) 

where [GI, G=] ~ G~ Gk - Gt G~ is a commutator of group generators, being 
an element of the corresponding Lie algebra (Pontryagin, 1959); Gt,.t I = 
Gi.k -- GA.~ is the outer derivative which also satisfies the axioms of Lie 
algebra (Caftan, 1927a). Since G[i;t] belongs to a Lie algebra, then due to 
(2.13) the above statement has been proved. 

Taking into account this fact, we say that the holonomy generator 
Gt~;a] generates holonomy algebra 3~" o f f  of the topological group by 
differentials [~ ;d] G e " f  o if:  

[ a ;d ]  a = G[, ; .Sxtdx * (2.14) 

(outer differentials of group) onto the field .~ x .~, where d x v ,~. The 
correspondence between algebra ~r" 6 f~ and group ~e'. ~' is trivial. Let us 
call the topological group holonomic if the corresponding holonomy 
algebra consists only of the zero element (which means the absence of a 

t It was named by Caftan the 'holonomy group'. 
~: Here one supposes holonomicity of parametric space: [ 8 , d ] x  I - O. 
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change in the group after the circuit in parametric space has been passed), 
i.e. 

[a;d]G = % : , ] -  0; [~;d]C-- E (2.15) 

for any X E .~ and [~;d]  ~ 3 :/'. 
The importance of the concepts introduced illustrates 

Theorem 1: Lie group is holanomic. 

For the additive group it is obvious from (2.8). For multiplicative Lie 
group 

":. ~2G ,-:-i aG 0G -l 
" " *  -- ~ " + ax'" ax ~ (2.16) 

But from GG -~ = E it follows that 

OG - I  G_ ! aG OG - l  = _ G _  l OG G_ I ~ax ~ G + ~ = o; a-7 ~ (2.17) 

Substitution of(2.17) into (2.16) with respect to (2.8) gives: 

Gt,.~l =-[Gt,  Gfl (2.18) 
This proves the theorem. 

Thereby it becomes reasonable to name the element of holonomy 
algebra defined from (2.13) a twist of the group (twist of holonomic group 
is absenO. 

In Lie finite-dimensional algebra (Jacobson, 1961) there exists a local 
basis in which 

[GI, G , I = ~ G m ;  G[l.,] = ~'~ G. (2.19) 

whereas? 
~ - -  -d'~; ~ae~,+c~uc' . ,+~d' .a=O (2.20) 

(analogous correlations must ~ satisfied for ~ ) .  As soon as the local basis 
may change from point to point &parametric space, then all the quantities 
in (2.19) can depend on X 6 -~- Naturally one can ask a question: 'Under 
which conditions do the structural functions c~(x), ~ ( X )  transform into 
structural constants?' An answer to this question results in: 

Theorem 2. A holonomic group is defined by structural constants and 
infinitesimal operators. 

Let the correlations of (2.19) be fulfilled at point X E .~. Then at a neigh- 
bouring point X + dX the following takes place: 

[G,(x + dx), G, fx + dx)] = c'r~(X + dx)Gm(x + dx) (2.21) 

1' Here and thereafter we shall define elements of the group (implying matrix representa- 
tion) by capital letters; small letters will refer to numbers, functionals and matrix elements 
(with corresponding indices). Vector X---(X~ ' . . . . .  X t) in parametric space will be an 
exception. 
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Bccauseof(A3) and (A4) 

E -l--SG( X + d X) --- [E + d6G(x) ] . [E + ~G(x) ] 

Wher, ex 
6 , ( x + d x ) = G , + G , . ~ d x ~ + O , . ~ O . , d x k d x ' +  . . .  (2.22) 

where all the quantities in the right-hand side are determined at point 
X ~ .~. SubstitUting (2.22) into (2.21) we obtain 

[G,(Z + dx), G,(X + dx)] =-[G,, G,] + [G,.,,,. G, ldx*' + [G,, G,.,,ldx" + 02 
(2.23) 

where 02 comprises outer differential forms (Cartan, 1927) of higher order. 
These forms can be expressed as superpositions of various degrees of the 
second and third members in the right-hand side of (2.23). Thus Theorem 2 
demands the fulfilment of equalities 

[G,... 6 , ]  + [6 ,  6 , . . 1  = 0  (2.24) 

for any values of  indices. Having made double-cycle permutation of indices 
in (2.24) and subtracting equations obtained from the initial one, we have 

[au. ,  ;, G,] + [6r G,] + [6[, m, G,] = 0 (2.25) 

This, in view of (2.19), is equivalent to the equation 

~f~, ct,~ + f f ~  c~t + ~ t  c,Z,, = 0 (2.26) 

For the holonomic group ~ =-c~,,  and equations (2.26) and (2.20) is 
automatically satisfied in all points X e .~ whereby the statement of theorem 
has been proved. 

It should be noted that the equation (2.26) has been satisfied when 
~ , (X)  = ec~(x), where r is any number. From the above considerations 
it follows: [G~(x),Gk(x)] = cons(, whence by the formula (2.17) we get 
Gv;kl(X) = (e + I)[Gt(x),Gk(x)] =const. The uniformly twisted groups 
(which Caftan named 'symmetric spaces' (Caftan, 1927) meaning first of 
all the spaces of constant curvature), as well as the holonomic groups, are 
defined by the structural constants and the infinitesimal operators. But the 
uniformly twisted groups (and groups with constant generators in their 
number) are not the Lie groups, being nonholonomic groups. 

Theorem 2 allows one to extend all thoroughly developed formalism of 
Lie groups to any holonomic groups. 

But for our purposes this formalism is not all we need, because the task 
put in the Introduction makes it necessary (as it will be shown later on) to 
study the deformation of Lie groups into non-holonomic topological 
groups. 

3. Deformation of Topological Groups 

Let us consider homeomorphism 9':-~ -~ -~' of  parametric space 

~(x)  = ~; ~-'(~) = x ( 3 . 0  
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tO which corresponds linear reversible mapping of differentials 

but d 2 does not need to be a full differential, and ~'  may be non-holonomic. 
Homeomorphism ~ induces homeomorphism ~ : f~ -+  ~ '  of group 

into group f~' (homeomorphism of group formation): 

a'(~3 = V'{G[~(X)]} = G(X) (3.3) 

Since homeomorphism groups are reciprocally continued and one-to-one 
valued one can put reciprocal correlation between the neighborhoods of 
units V(E) e f f  and V'(E') e ~5". Contracting these neighborhoods to 
the point one obtains 

E ' = E  0.4) 

Because d x is small and homeomorphism is continued then 

~r(x + dx)= ~ + d2 + Oz (3.1a) 

where O, is the remainder ofsecond-order ofd  x. As the process is continued 

v'{6[~(x + ax)]} = v , [6(~ + a2 + 0,)1= 6'(2 + a9 + o, (3.5) 

On the other hand, due to (3.3) 

v'i6[r + c/x)]} -- G(x + ax) (3.6) 
Comparing the last two expressions, with respect to (2.10), it is possible 
to deduce, first of all, that homeomorphism is locally homomorphic 

dG'(~). G'(2) = W[dG(2). G(2)] = dG(X). G(X) (3.7) 

Secondly, as G(X) in (3.7) is arbitrary and considering (3.3), it follows that 

a6"~) = ~r'[G(2)] = d6(X) (3.8) 

from whence in view of (2.6), (2.7), (3.2) and (3.4) one gets linear inter- 
relation of the generators of homeomorphic groups: 

G='(~) = ~,= Gt(x) (3.9) 

The latter result readily gives linear transformation of commutators 

[6,', 6/1 (2) = ~," ~,'[6.,  G,] (x) (3.10) 
However, as 

6;:,(2) = 9'~X) 6,.(X) + q','(X) ~,'(X) 6,.,(X) (3.1 l) 

then generally non-linear mapping of outer derivatives follows 

6;l.,j(~) =-~.,l aM(x) + ~," ~," 6=,,.,j(x) (3.12) 

Corresponding change of group twist 

G~,;=3(2) = 9h"Ft" GIm:,z(X) + ~],*l G,(X) (3.13) 
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can be interpreted as a non-linear transformation of structure functions 

l fO is an automorphism (a transformation of coordinates) of parametric 
space then 0t ~ --- (a~/a~)  and 0it.,] = 0 so that isomorphism of holonomy 
algebra is induced as on the basis of (2.14), (3.2) and (3.13) 

[3; d] G'(~)= [3;d] G(X ) 0.15) 

From this and from the definition of holonomy operator it follows that 
0 is (globally) homomorphic and, consequently (Pontryagin, 1959), the 
homeomorphic groups ~ and 0(~  +) are isomorphic. 

Vice versa, if groups ~ and ~" are isomorphic they are homomorphic 
and homeomorphic. That is why holonomy algebras ~r" o ~ and +/" o ~ '  
must be isomorphic. 

~ u s  
= 0 (3.16) 

are necessary and sufficient conditions for group isomorphism determined 
by (3.2), (3.3). 

l e t  us call group homeomorphism t/r: ~ .__> ~ ,  determined with the help 
of differentiable functions 9-~(X) in correlations (3.9) among group genera- 
tors, a deformation ofgroup ~ into group ~ '  if~[t.,] # 0.t A set ofdeforma- 
tions forms a group of topolo#cal transformations; in i~ turn, a set of 
the topolo#cal groups, deformed one into another, forms a topological 
class in which deformations act. 

It has been shown that: 

Theorem 3: Within the topological class a group is determined by its 
holonomy algebra with accura O, up to isomorphism. 

It follows directly from Theorem 3 that the topological class comprises 
not  more than one holonomic group (in particular owing to Theorem 1, 
not more than one Lie group). 

The group deformation was defined above by means of non-holonomic 
homeomorphism ~p of  parametric space. Nevertheless, sometimes the 
description of  group deformation, from the viewpoint of  the theory of 
representations, with the help of induced homeomorphism of the groups 
themselves appears more convenient. For this purpose (3.3) will be written 
in the following form: 

 [6(x)l = c~  --  s ' ( x ) ,  c ( x )  O.IT) 
where SO0 can be called the deformation operator. 

t "Contraction" and "deformation" of Lie algebras, intensively investigated in recent 
years (lhonu & Wigher, 1953; Gerstenhaber, 1964; levy-Nab.as, 1967), are limited by 
reciprocal mapping of Lie groups. 
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As far as group mapping: :~ ---> ~ '  is homeomorphic the operator S is 
reve_rsible. Also, the sequence of two homeomorphisms (non-hoionomic 
ones in their numbe0 ?,[~l(X)] of parametric space can always be sub- 
stituted by one homeomorphism ~21CX). Therefore operators St and $2 
are associative and hence form group stricture (a group deformations). 
Differentiation of O.17) in accordance with (A.14) and (A.17) gives: 

dG'= dS + S .dG.S  -t 

~G" = ~dS + S{3dG + [3S, dG]} S -~ 

Substitution (3.18) and (3.19) into (2.15) results in 

[O;d]G'= [3 ;d ]S+  S . [3 ;d ]a .S - '  

0.18) 

OA9) 

(3.20) 

where all the values are determined at the point X ~ -~- 
"Thus for homeomorphism ~ to be isomorphism (transformation of 

coordinates in the group) it is necessary and sufficient that the condition 

[~; d] S(X) - 0 (3.21) 

should be fulfilled. 
We shall say that formula (3.3) is a horizontal description of homeo- 

morphism ~ ,  and (3.17) is its vertical description. In general, an arbitrary 
homeomorphism ~ :  ~ -~- i f '  can be described as a sequence ~ =  .('2 o Z' 
of  the horizontal homeomorphism ~': G'(X)= G(X) and the vertical 
homeomorphism f2:G'(X) -- S(X).G'(X). It results in 

a'(x) = s (x ) .  a o d  (3.22) 

so that the form ofthe equations (3.17) + (3.20) is held, but the quantities 
included in them would be determined, in the light of (3.22) above various 
parametric spaces. Therefore, because of (3.2) and (3.18) a nonlinear 
mapping of generators is possible: 

a/C  + s . a , ( x ) . s  -z (3.23) 

4. Deformation of  Subgroup Structure 

In the above section it is shown that the deformation is revealed in a 
disturbance of the group structure. The disturbance of subgroup structure 
of  the topological group due to deformation is of special interest, but the 
construction of corresponding general theory is not our task. That is why 
we shall study here only_ the deformation of the group structure dealing 
with two subgroups.t 

t The general theory of subgroup structure deformation is likely to be constructed 
with induction from this particular case without substantial dL#Fvzulty. 

25 
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Let .~e ~L and ~ Y be two topological groups, whereas 

d g ( a ) - E r +  Y4(a) d~'; i-- 0, !, . . . .  m 
(4.0 

dL(~=EL+L(,)(~) p" ; ( i )=(0) , ( i )  . . . .  ,(h) 

so that each group owes its own parametric space: 
Let us consider now the topological group ~' 3 P formed by a union of 

two groups: P = L v Y so that 

Ep= EL v Ey, P= = L~ v r~; P=.~= L~.~ v Y=.p (4.2) 

Parametric space -~e is a product of constituent group parametric spaces, 
thereby the indices in (4.2) go through the whole set of i, (i) values.t Let 
us demand that the union operation be locally linear and distributive: 

(adL" + bdL')v (adY' + bdY')=a(dL" v dY') + b(dL" v dY')  (4.3) 

The rest of its features are preset or have been determined from group 
structure: 

dP=dP' .dP '=(dL '  v dY').(dL" v d Y ' ) = d L v  dY  (4.4) 

The constituent groups .~ and Zi' would intersect in the compound 
group .~ providing an appearance of supplemer~tary generators: 

r ( , ,  = ~ . , , ,  Y~ (4.5)  

L _ . . ( t ) r  - x . ,  ~ * )  (4.6) 

Together with basic generators the latter forms a full system o f ~  group 
generators. Union (4.2) of these generators, with respect to (4.3) and (4.5) 
defines the holonomy algebra ~r" o ~'. Thus, because of Theorem 3, 
subgroup structure given by the above operations of union and intersectionS. 
ofthc subgroups defines the group with accuracy up to isomorphism within 
the given topological class. 

Linear mapping (3.9) of generators by horizontal homeomorphism 
provides on the basis of (4.2) and (4.3) invariance of subgroup union 

~(dL v dlO = ~(dL) v ~(dY)  (4.7) 

due to which 
L='(YC) = ~=~'(x) L~(x)  ; Y=' ( ,~ )  = %,~ ' (X )  Y~,(Z) (4.8) 

so  that  in v i e w  o f  (4.5)  

L{(~) = t ~  .,..r ~'v= x . =  + cP~'))L(.)fX) ( 4 . 9 )  

I" In other words, the group .~ contains two subgroups E v ~ and .~ v O, -~r x .~. = .~e 
being its parametric space. Thus P r j x  = X I ffi =l ~ ,~r and P r . ) x  = X ")  = ~ l )  e ~L.  

Subgroup structure is usually oeflned in some other way (Suzuki, 1956) through the 
operations of  Boolean algebra of sets. This way makes it possible to construct a more 
abstract but more complicated theory. 
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On the other hand, 

La' #.(t) r '  _- ~ .~ t ) t _=  ~(,) - ( ' ) ~ - -  ( 4 . 1 0 )  == A,I  " " ( t )  A . I  V f ' ( k ) A , m  "j- " t ' ( l ' ) /L" (a)  

Equating expressions (4.9) and (4.10) one obtains, because of L(,) in- 
dependence 

~a)t_- . (.) • -(,)~ - " "  r J- -t ')  (4.1 I) . l  ~L,/.'(a,) X .m T '/"(k)P ~ ~ ' i  ~ . m  ~ ' / " l  

Thereby it is shown that group homeomorphism changes subgroups 
intersection (non-linearly). If the subgroups are not intersected in the 
initial group, i.e. -'~') = n then 

~ a )  _ ( . )  _ _ ( . )  ( 4 . 1 2 )  ,1 W ( k } - -  ~ I  

Similarly one can consider homeomorphism of the other subgroup 
~t(y).  In particular having X~(~) --- 0, one obtains the equations, 'conjugated" 
with (4.12) 

~.(o r = ~ ' )  ( 4 . 1 3 )  

in which the indices interchanged the brackets. 
Thus invariance of subgroup union under group homeomorphism by 

no means provides invariance of the subgroups themselves because of 
subgroup intersection non-invariance in general: dL'(x) ~ dL(x). 

As far as 
~(o) - -  o ( - ) - ~ * )  #.t-) - ( , )  . - #.tin _~,)  ( 4 .14 )  

[ i , k )  - -  A . i  "F(m).k - -  ~(.k ~v(m). l  "t- A ( / . k ) W ( m )  

then the reduction to zero of left-hand side parts of equations (4.14) and 
those of 'conjugated" with them is, due to (3.16), a condition necessary for 
group isomorphism: ~ ~ ~ ' .  Therefore it is immediately seen that group 
isomorphism does not require isomorphism of subgroup structure. On 
the other hand the isomorphism of subgroup structure is insufficient for 
group isomorphism and conditions of absence of the subgroup deformation 
as was'ali'eady mentioned, must be added :t 

q~[t.~] . (o  ---- 0 (4.15) m "r((J,),(m)) 

It should be noted that the above horizontal description of the subgroups 
structure does not depend on the production law (4.4) which is to be 
adaccounted for in the vertical description. Nevertheless, the definitions of  
union (4.2) and of iniersection (4.6) of the subgroups, as well as the general 
way of discussion are retained. 

5. Relative Geometry and the Theory of Relativity 

The chief problem in geometry was formulated by Klein in his Erlangen 
program (Klein, 1893) as follows: 

'A manifold and a group of transformations in it are given. The invariant 
theory of the group is to be developed'. 

t In the canonical theory (Suzuki, 1956) group isomorphism governs the isomorphism 
of subgroup structure and not vice versa. 
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This means that the geometrical methods can be applied to the investiga- 
tion of  only such topological groups the eigenspace of which (the space of 
the given group formation images) forms a manifold. Since, through the 
definition (Chevalley, 1946), the manifold is prescribed by some family of 
analytical functions on k-dimension affine space then it is obvious that the 
"geometrical" groups must have analytical formation, i.e. they must be 
Lie groups. 

It may somehow be possible to expand the class of geometrical groups 
if the requirements on the functions prescribing the manifolds are reduced 
to (a sufficient number of times) differentiability. The corresponding group 
is still a holonomic one. 

The last condition--holonomicity--is essential for the group "geo- 
metricity'. In fact, the coordinates of non-holonomic group elements are 
non-invariant under the simplest motions (closed cycles) of its parameters. 
Therefore the non-holonomic group, generally speaking, does not have 
any invariances. 

C.artan (1927b) often stressed the meaning of the holonomicity concept 
for the investigation of group geometry. Nevertheless, the synthesis of 
Erlangen program ideas with Riemannian geometry ideas was carried out 
by him (Cartan, 1927a) and his successors (Lichnerowicz, 1955; Nomizu, 
1956) in the theory of fiber bundles not on group-theoretical but on a 
geometrical basis with the help of the concept of parallel displacement. 

In the present paper Klein's algebraic viewpoint is extended onto 
arbitrary topological groups in the frames of 'Relative geometry'. 

The set Tt of topological groups with k-dimensional parametric space is 
subdivided into topological classes. Each topological class is characterised 
by its only holonomic group, the geometry described in the spirit of Erlangen 
program. The relative geometry of  two holonomic groups from Tt is 
determined by the difference of  structure constants of  commutators of 
their Lie algebras. Inside the topological class, group geometry is charac- 
terised by holonomy algebra which elements can serve as a quantity 
measure of  the deviation of the deforma'ed group geometry from the 
geometry of the corresponding holonomie group. As it was mentioned in 
the above section, the holonomy algebra is invariant under any trans- 
formation of coordinates. This together with Lie algebra invariance 
justifies the introduction of  the concept of the group "relative geometry'. 

However, the content of group relative geometry is not completed by the 
investigation ofholonomy algebra. Herewith a number o~'purely geometrical 
concepts and ideas, which would concretise some particular (projective, 
affine, etc.) geometry, must be involved. 

Physical geometry, in which geometrical objects correspond to the results 
of physical measurement, operates with metrical concepts included through 
the help of a norm ]IGII. The intention to introduce a norm, the same for 
the whole topological class, demands the invariance of the norm not only 
under the transformation ofcoordinates but under the group deformations. 

Free space-time is homogenous. Therefore its geometry is defined in 
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accordance with the Erlangen program by some Lie group. A physical 
field breaks down space-time homogeneity as was mentioned in the 
Introduction. A breach of  space-time homogene/ty may be attributed to 
either a field or to a non-inertial system of reference. The latter is actually 
equivalent to the former because any non-inertial system of reference can 
be formed by a number of charges moving in a field. 

The relative geometry of  non-homogeneous space-time is determined by 
the given Lie group deformation within the corresponding topological 
class. Summarising the above and taking into account the traditional 
problems one can define the theory of relativity as a relative geometry, the 
physical content being introduced b~ the following: 

Postulate: A field deforms a representation of the group of free space-time 
mtoions. 

A field topology is here assumed to be present. It defines the topological 
class within which the deformation takes place. 

6. Deformation Geometry of  the Poincare Group 

Consider now space-time geometry. For this purpose we shall study 
deformations of the Poincare group. 

As is well known, the inhomogeneous group of  coordinate transforma- 
tions in Minkowskian space is called the Poincare group 

~=/,,~+y' (6.1) 
Structurally, this group is the semidirect product ~'  = ~ v ~ ofthe Lorcntz 
group ~ and the translation group ~ ~ith the multiphcation law 

P ' . P ' = L ' . L ' v  LY" + Y, Pc~t~;LE~-~; Yc~/  (6.2) 

Together with the natural topology, the Poincare group is the Lie group 
with the parametric space ~r  =-~r • -~z formed through the product of 
subgroup parametric spaces Orappa, 1966). Thus the vector Z of Poincare 
group parametric space has ten components, the first four X t E -~r (i = 0, 
1, 2, 3) being the parameters of translation group and the six others X m~ e -~L 
being the parameters of Lorentz group of rotations in the plane (/k): 
X ( ' ~  = X~U'; X " ' )  = O. - - -  

Also,.from the definition of the semidirect group product 

~.~ - 0 ;  x~= ,  -- 0 ( 6 3 )  

i.e. the subgroups . ~  and ~.~ do not intersect in group ~ .  
As it was mentioned in Section 4, the oggrations of union (4.2) and 

intersection (4.6) govern the subgroup structure of the Poincare group. 
It can be easily checked that unit 1 ofthr Poincare group 

l = E v  0 (6.4) 
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iS formed by the union of Lorentz group unit E and the translation group 
unit O. Similar con'clations also rake place for the gcnerato~t 

~ . = ~ , v  r .  (6.5) 

Due to (6.3) 
Lj = O; Y(a) = 0 (6.6) 

Substituting (6.5) into (2.13), in view of (6.2), we have the twist of  the 
Poincare group~ 

e~;~]=i[L,.Z~]+~.~v {~, r~j+ r[,.~ (6.~) 
where 

l~, r~]=L, r~-zp r .  (6.s) 

Lorentz and translation subgroups, being Lie groups, are holonomic, 
also, they are not intersected. Thus, as expected, 

P~:~s] = 0 (6.9) 

i.e. the Poincare group is holonomic. 
Consider now a deformation W : ~ - ~  .q of  the Poincare group into a 

topological group 
.~ ~ ~ = M y  X (6.10) 

being the union of basic space (of the additive group) ~ ~ Xand the group 
of  tctrad rotations . L  ~ M. 

Due to the invariance of  the union under deformation, the twist of  the 
deformed Poincare group is expressed by a formula similar to (6.7): 

Q[=:~={[M=,MIj]+ M[,.Ij]}v {M[=X~] + %[=.~ ]} (6.11) 

Nonetheless, the subgroups of  the group .~ can intersect due to deforma- 
tion, so that the generators of  these subgroups become intercorrelated. 
This phenomenon, insofar as the effects of the basic space twist QcJ.~] 
would be of  interest for us in physical applications, can be written as 
follows: 

M, = ~2 ") M(_) (6.12) 

Further we shall operate with the matrix representation of  the Poincare 
group and its deformations, the Lorentz group being represented by the 
square (4 x 4) matrices and the translation group and basic space being 
represented by the column vector (4 x 1). The matrix elements will be 
denoted by the corresponding small letters with the indices: 

/ '  = {p?.} = ( / 'd  v {y'}  

t All group elements and generators are cot -~dered locally at some Ix~/nt of parame.~ric 
space. 

:[ This means that from (2.6) and (6.2) [! follows: d P ' . d P "  - d L ' . d L  ~ v d L ' . d Y ' .  
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In particular (6.12) 'in coordinates" will be 

(m~.,), = ~r (6.13) 

since X~ form the full basis in vector space ~', the one-valued expansion 
takes place 

~,~" :- (X'), ~ ' '  (6.14) 
which after substitution into (6.13) gives 

( ~ ) ,  = [~="(m~. , ) ,_ , ]  ( .~),  (6.15) 

In the matrix form the last correlation is: 

M, = X,"/" (6.16) 

where r (x)  is a three-dimension (cubic) matrix connectivity in which 
coordinates are given by square brackets in (6.15); Xi" is the transpose 
matrix Xl (the row 1 x 4). 

The substitution of (6.12) into (6.16) gives two expressions for the twist 
of the basic space of the deformed Poincare group: 

- X . t  X.k Mtt=.~:~,,nv M~.,~2t.'~i')XAl+ Xu.~l (6.17) i l ; l ]  - -  - ( . a )  - ( r s )  

Or,:,1 = {Xt'~ rXf i / "  + Xt~., 1/" + Xt' ~/".,1} v {Xt~/~X~ 1 + Xt,.,j} (6.18) 

where/'.~ = (~]aXA)F. 
Now let us introduce an invariant norm (an interval) into the topological 

class of the Poincare group as follows 

ds = l[dQlI = v ' (dX" G dX)  (6.19) 

where G = {g~(,~)} is a metrical matrix (4 x 4) satisfying the equation 

G = M "  H M  (6.20) 

being the matrix of pseudoeuclidean square form 

H =  diag ( 1 , - I , - I , - 1 )  (6.21) 

which serves also as the metric matrix of the Poincare group in the canonical 
coordinates. 

An infinitesimal transformation in the rotation group: M ' = d M . M  
is compensated for by an infinitesimal transformation of the metrical 
matrix: G' ,~ G + dG, so that M'" G' M' = H or 

(M"  + M"  dM' )  H ( d M . M  + M)  = G + dG (6.22) 

Using (6.20), we have with first-order accuracy 

M ' ( d M "  H + H dM)  M =  dG (6.23) 

Taking into account (6.20) and (A.16), this reduces to 

dG = dM.G + G.dM (6.24) 
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whereby, denoting G.= = (O/aX =) G, we obtain 

G.= == M=" G + GM,, (6.25) 

which, after substituting (6.16), gives 

G.~ = F" X~ G + GXd F (6.26) 

.Now one can introduce the concept of a derivative in the topological 
class of the Poincare group 

(~ = d_Q (6.27) 

Owing to the linearity, one has 

(~ = ~/" v ~;  L~ = ~ v X (6.28) 

where the corresponding derivatives with respect to the group norm are 
denoted by dots: ~'-- (dX/ds). In termsofderivatives formula (6.24) will be 

0 = .~r, G + GAY (6.29) 

and (6.17) will be written 
gt = ,r P (6.3O) 

Also from (A.15) and (A.16) we have 

.~rM = Jt~/M; A~/-t = - m - '  3~/M (6.31) 

As it was mentioned in the last part of Section 3, homeomorphism 
~ : , ~  --~ ~ can be expanded into the horizontal and vertical components: 

O(~) = S0?).P(x) (6.32) 

Following the usual notation we shall from now on use the basic representa- 
tion in which 

Xj = {~i t}; dx I = dx I (6.33) 

To provide this in view of (3.23), (4.2), (6.2) and (6.32), it is necessary and 
sufficient to put the deformation operator as 

S = M v O  

where 
M =  (,~..,}; ~,* m~" = 8," 

In the basic representation, (6.26) gives 

(6.34) 

(6.35) 

This is the well-known correlation of Riemannian geometry between the 
metric tensor g~k and the Christoffel symbols Y~.t. 

(6.36) 
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The twist of  the deformated Poincare group can be written as 

Qv;*]  = R.,  v T,. (6.37) 

whereas having substituted (6.33) into (6.18) we have in coordinates 

(r..,),, = ~,.= ~ - ~ . ,  ~,., + 
a.P ax ~ (6.38) 

( t %  = ~ . ,  - ~/., 

This, taking into account geometrical sense and functional correlations 
(Schouten, 1951), makes it possible to identify (r.'~), k and (ta),~ with a 
curvature tensor ~*b and a torsion tensor tI'A, correspondingly. As a result 
of  this, the generators Qu.*J of holonomy algebra in (6.37) may bc con- 
sidered as the union of curvature generators R~k and torsion generators 
TI,. The substitution of(6.33) into (6.17) gives the following expressions for 
the curvature tensor and the torsion tensor: 

(~),~ - ( "~  -(,,~ = X.[, X.l j  (nr.~,)~,,,,,):(,m 
(6.39) 

(t'),, = ,~!T')(m.~A)(,,,) - )~[~")(m.',)(,,,, 

The physical application of the theory will be considered in the next 
section. Nevertheless, the results obtained above already allow o~e to 
conclude that the relative geometry of the Poincare group deformations 
c a n  serve as the mathematical base for Einstein's theory of relativity. 

7. Accelerated Reference System 

An dement P of  the Poincare group can be interpreted as a transforma- 
tion (6.1) of initial basis, yl, being the coordinates of the initial basis origin 
in reference to the new one and !~ being the projection of ith axis of the 
new basis on to the kth axis of the initial one. 

A trajectory X ~ = X~'(s) determinates motion of the basis L[x(s)]v 
u in the Poincaregroup. Define a rotating reference system with the 
help of  basis rotating without deformation in the plane (12) by the law 

X o .= $; X " i f =  ~.* )  too. ..o2)]-J, Xi = const ( i#  0) (7.1) 

where w is the angular velocity. This corresponds to a one-parameter 
subgroup of  the Poincare group: 0 !), ) 

r . r / I 60 ., . r 
c o s -  s - s i n -  s X cos c s  - X" s,n ~ s 

e c V (7.2) 
P(s)- . o, o, I I" oJ 2 o, 

sin-So coS-Sc \X S m c S + X  COScS 

o o o ! \ x j 
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The rotating reference system should naturally ix: called a deformed Poin- 
care group .~ -- ~P(P) in that in it the basis (7.2) does not rotate, i.e. 

V,[e(s)]  = Q(s) = E v  X(s) 0 . 3 )  

Comparison of  (7.2) and (7.3) with (6.32) gives the following deformation 
operator: 

S(s)  = A(s) v 0 (7.4) (i0 0 O) O J  . r 
COS-$  s m - s  0 

A(s)= L - ' ( s )  = c _ c 17.5 ) 
. r O) 

- - S m - - S  COS--$  0 
r r 

o o 1 

X t 
M(s)  ~- E; X(s) = L- '(s) .  Y(s) = (7.6) 

Let us choose now in the rotating reference system such a coordinate 
system where: (i) the motion law (7.1) of  the fundamental basis is kept; 
(ii) the basic representation (6.33) is provided. Having (3.12), (6.32) and 
(7.5) it is easily seen that both conditions satisfied at such a coordinate 
mapping as: 

_ -  = 

(7.7) 
�9 ( ~  -2 Sr o dx2 .= dR' s,n-~ x + d  R co c X 

where dX" = ~ "  (~ ~ 1,2). 
Deformation (7.3) and (7.8) of  the Poincare group into the rotating 

reference system causes an intersection of  the rotation group with the basic 
space. In fact, though in the case considered we do have: 

X , ~ )  = Y,(X); M(,,)(R) = L(,k)(X) (7.9) 

but due to (3.23) an additional generator appears in the rotating reference 
system: (i0 00) o - ~ -  o 

c (7Ao) 
M o ( ~ )  = Ao(X  ~  == ~ 0 0 

C 

0 0 0 
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which can be written as 

M o ( ~ )  = ~ : 2 ) ' ~  . ~.olz~ ~ (7.1 I )  A,O L ' ( 1 2 ) ,  . : ~ r 

whe~ ~o t'~ is the intersection of the rotation group in plane (12) with the 
time translation in the rotating reference system; L~ is the infinitesimal 
operator of the Lorentz group of rotations in plane 02). The origin of the 
minus in (7.1 !) is connected with the compensating nature of the generator 
Mo(~). 

Substituting (7. I i) into (6.17) one can see that curvature Ra in the rotating 
reference system is equal to zero, but torsion T~, has components different 
from Zero where the twist of the rotating reference system is in the form 

0[,:11(:~) = 0 v - ~ / . ~  .'J 8.*,~) = const (7.12) 

governing the curvature tensor 

o J  
t 2  = = ~ _ t l O  = t~ 

10 - - ' 0 1  :02  ~ ,. C 
(7.13) 

The transition to the rotating reference system does not change the 
metrics because of (6.25). Besides, thanks to the above-mentioned fact, 
space-time is left flat in the rotating reference system. 

The above example, considered in detail, allows one to formulate the 
general definition of the reference system. So in future a homeomorphism 
3 = J v Ar of the Poincare group will be identified with the reference 
system formed by the fundamental basis Ev .~" with the help of the deforma- 
tion operator S = A v 0. The formation of the group being given as  
Q= Q(x) for example, through a fundamental basis motion law: 
X"--X'(s) invariant under the homeomorphism, one may choo~ a co- 
ordinate system. If the deformer A belongs to the Lorentz group, then the 
corresponding deformation does not curve the basic space holding pseudo- 
euclididenean metrics in it. It is convenient to use the canonical coordinate 
system, in this case putting 

d:~ s ,= dxa; d~ m) " dXc'k) (7.12) 

The totality of bases moving in the Poincare group by the law 

X m )  = const (7 .13)  

forms an inertial reference system, the Poincare group itself being the 
inertial reference system with the fundamental basis: Xea)-- - 0. It can be 
readily shown that the homeomorphisms to the inertial reference system 
are holonomic, so that all of i.r.s, are isomorphic on the basis of Theorem 3. 

One can now construct a uniformly accelerated reference system to give 
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one more example. As it is well known, the motion of  a particle in the 
inertial reference system according to the law 

Y=(-~sh-~s.~(ch~zs-1).O.O) (7.14) 

is called the uniformly accelerated (Landau, 1961) or hyperbolic (Rogozhin, 
1966) motion, where a is the Newtonian acceleration of particle; s is an 
interval along its world line, the particle resting at first (when s = 0) at the 
origin of the initial basis of the Po,ncare group. 

The equation (7.14) may be considered as a projection of the one- 
parameter subgroup of the Poincare group: 

0 0 0 

onto the translation group. In fact, 

P(s  + t)  = LO + t) v Y(s + t) = p ( s ) . t , ( t )  (7.16) 

follows from (7.15) confirming the above statement. The corresponding 
trajectory of motion of the basis P(s) in parametric space is found from 
the equations: 

~(s)  = e(~ +,~).e- '( ,)  - /=e=dX = (7.18) 

whence having p-n = L-= v - L  -n Y, knowing the generators P= = L= v Y= 
and accounting independence old  x= one obtains 

.~(llk) a . .  X'~(s) = "-~o,~..,, X ' ( S )  = 8o'S (7.19) 

which corresponds to 'a rotation" of the basis in the plane (01). 
The uniformly accelerated reference system is to be defined now through 

the Poincare group deformation which acts by formula (7.3). Further 
considerations should be analogous to those for the rotating reference 
system. The only difference is that instead of (7.5) we have the following 

\ 0 0 0 

de former: 
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One should put s = X ~ into (7.20) for the fundamental basis to move in 
-the constructed reference system by the same law (7.19). As a result, the 
following mapping of coordinates between the (parametric spaces of the) 
inertial reference system and the uniformly accelerated reference system 
is obtained: 

-o a o sha~oc 2 dx~ chc2 X +d~ '  

dx I o G - o  - !  a - o  = d  x s h ~ x  +d,~ c h ~ x  (7.20 

where d ~  = dx ~ (~ # O, 1). As for the generators of the uniformly acceler- 
ated reference system they are easily checked to be 

Iz-.~ _ ~ ( 0 1 ) I  (01 ) .  ~ (01 )  ~ a o',x, - ,~.o "~.o , ,~.o - , ~  (7.22) 

as an addition to (7.9). Since one can calculate the twist of the uniformly 
accelerated reference system: 

O t , :~ l (~ )  ~ O v a o o - ~ L~ol~ 8ti Xt~ = const (7.23) 

The infinitesimal operator value of the Lorentz group of 'rotation" in the 
plane (01) when substituted into (7.23) gives the non-zero components of 
the torsion tensor as: 

tO ~ , 0  __ a s --ol - ~ (7.24) 

This result had been obtained by the author earlier, on quite the other 
grounds (Rogozhin, 1965). In the same work there was considered the 
physical sense of space-time torsion in the uniformly accelerated reference 
system. 

The conclusion about the appearance of torsion in the rotating reference 
~jstem may have been obtained here for the first time, though it seems an 
almost obvious consequence from the analogy between the mentioned 
reference systems, both forming by the rotating basis. 

We have also considered various combinations of basis torsions forming 
screw, helical and some other reference systems. The results will be published 
in another paper; the purpose of the given paragraph was to demonstrate 
in simple examples the efficiency of the apparatus of the group deformation 
theory developed above. As a result of the torsion, the mapping of co- 
ordinates between the inertial reference system and the various accelerated 
reference systems should not be integrable, providing invariance of 
dynamical effects under arbitrary transformations of coordinates within a 
reference system. This fact attaches physical sense to our definitions of the 
accelerated reference systems, unlike the canonical definitions (Landau, 
1961 ; Rogozhin, 1960. 
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8. Classical Fields 

Physical fields acting within space-time are called classical fields. In this 
ease the Postulate of Section 4 is formulated as follows: A elassicalfield 
deforms the motion group of free space-time. 

Insofar as the Poincare group is just the group of motion of free space- 
time, the classical fields deform the Poincare group so as to act on to 
space-time. 

In accordance with the previous paragraph, geometry of a classical field 
is determined by some reference system resulting from the inertial reference 
system with the help of deformation (6.23) and (6.35) as 

= v 0 ] . [ e v  Y(X)] (8.1) 

where the deformer A(~) must have been given by the field equations or 
by the equations of charge motion in the field. 

Let a one-parameter subgroup of the Poincare group homeomorphism 
.q = .AV v ~ be named the world line of a particle if: (i) the trajectory $(s) 
is determined on the translation parametric subspace, i.e. $(s) =- a(s) ~ -~x; 
(ii) the corresponding norm IIQb2(s)]ll is a real number. 

The world line of a particle is invariant under deformation (8.1) as 
follows from the properties (6.35) of the deformer. But if a particle moves 
in the inertial reference system by the law: 

et~Cs)] = E v rt~(s)]  (8.2) 

then motion of  the particles in an arbitrary reference system would be 
described by the equations 

fl[,;(s)l = M[a(s)] v X[,7(s)] (8.3) 

in which orientation of the local basis relative to the initial is accounted 
and where through (8.1) 

M[a(s)] = A[,;(s)]; X[,;(s)] = A[a(s)]. Y[a(s)] (8.4) 

We shall use the basic representation (6.32) later, which allows the 
possibility of using the interval (6.19) along the world line of a particle as 
the parameter s. The marks of values of the parameters will usually be 
omitted when all quantities have been taken at the same values of the 
interval. 

Differentiating (8.1) with respect to the interval in accordance with 
(3.18) one obtains 

X'.=A 5. (8.5) 

l ~ i s  equation connects the velocity 5" of  a particle relative to the inertial 
reference system and velocity ~" relative to an arbitrary reference system. 
Repeated differentiation according to (3.19) and with respect to (6.31) 
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gives the equation for acceleration of a particle in the above reference 
systems: 

g= A ~ + A ~ (8.6) 

Let us call now the particles uniformly moving in their local basis, basic 
particles of the given reference system (for the given deformation of the 
Poincare group). In other words, 

8"-- const; .,r 0 (8.7) 

along the world line of the basic particles. Equation (8.6) for the basic 
particles of the .~ reference system will be 

1~+ Afr= 0 (8.8) 

In particular, since for the Poincare group in canonical coordinates 
L = 0 along the world lines of any particles the 'free" particles, for which 
17 = 0, serve as the basic particles of the inertial reference system. In 
general the rotation (basis rotations) subgroup of the Poincare group 
arbitrary deformation "compensates" the acceleration of its own basic 
particles in the inertial reference system according to (8.8). 

Interaction of a (classical) particle with given (classical) field are deter- 
mined by the (specific) charge ~. Let us use a system of units where: 

(1) �9 = 0 for the particles which do not interact with the field; 
(2) the particles with unit-specific charge are basic particles for the 

corresponding field (more precisely, for a Poincare group deformation 
caused by the field). 

f f ~  is the Poincare group deformation caused by the field then equation 
(8.6) hold for an arbitrary particle in the presence of the field. To introduce 
into the equation the concept of a charge satisfying both demands, it is 
enough to postulate the following equation of motion relative to the 
inertial reference system 

+ ,A 5"= 0 (8.9) 

First of  all, when �9 ~ O, (8.9) gives ~'= 0 describing th= motion of a free 
particle. 

Secondly, putting in (8.9) �9 = 1, we obtain equation (8.8) for a basic 
particle of the reference system .~. The substitution of (8.9) into (8.6) with 
respect to (8.5) and (6.31) gives the motion equation of the charge relative 
to the reference system proper for the field: 

X = ( l  - o A 8  (8.10) 

where, as well as in (8.9), all quantities are determined at some interval 
value along the world line of the charge. 
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Now, it is immediate that the electromagnetic field would be described 
by our fcrmalism, if we take e = e/mc a and write the following deformer 
derivative: 

A=-q~-~.F - (s.l l)  

in (8.1), where F =  {fj,} is the matrix formed by the electromagnetic field 
tcnsorsfa, where antisymmetry gives 

A" = FG -~ = - G A G - '  (8.12) 

From equation (6.29) it follows that along the world line of the charge 
the field metric remains unchangeable. 

Due to this, one can introduce in the whole field the Galilean coordinates: 
G = H in which the unit charge "rests', i.e. we have (8.7) for �9 = 1 and in 
the basic representation 

~'(s) = ~'(s) = ~'(s) = Bo'; A(s) = Ao(';) (8.13) 

Substituting (8.12) and (8.13) into (6.11) we obtain the twist: 

Otl;~J --- 0 v T,t (8.14) 

with zero curvature, Rlk = 0, and torsion generators different from zero: 

This corresponds to the torsion tensors: 

t/of';) = - t ' ( ' ; )  =Ai(~) (8.16) 

The mapping of  coordinates: X t --->~ between the inertial reference 
system and proper reference system of the electromagnetic field may be 
found from equations (8.6), (8.11) and (8.13). This mapping is non-integ- 
table due to torsion of the basic space. The latter is in the spirit of general 
relativity which proclaimed physical equivalency of reference systems 
connected between each other by transformations (holonomic mapping) 
of  coordinates. 

Generator A0(';) of  the electromagnetic field deformer because of(8. ! !) 
and (8.13) can De written as 

.4o(';) = ~ g '  L~ (8.t~) 

where  

:~co,~ _s ~.1o2) = H~; ~.~,3~ = H2; ~.o j~ //1 (gAg) .0 ~ A.O . 

Thus intensities of the electromagnetic field directly determine an inter- 
section of the rotation group with the basic space of  the proper group for 
the field reference system, the fundamental basis of which rotate in the 
Poincare group without deformation (without their curving). As a result, 
the electromagnetic field manifests itself in the a torsion of  space-time. 
The connection between el~tromagnetism and torsion was mentioned in 
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many works (Well, 1920; Emstein, 1930; Eddington, 1922; Schr~dinger, 
1950; Arbusov & Fillipov, 1967; Rodicev, 1968), the author's work 
(Rogozhin, 1968) included. Nevertheless, the present result (8.16) differs 
from those given earlier, though it seems almost obvious. 

To obtain the motion equation of a particle in the other classical, gravi- 
tational, field we shall proceed from the following experimental facts: 

(1) All the bodies, regardless of their nature, have equal specific charges 
i.r all the bodies fall with the same acceleration)---experiments of Galilei 
and EOtvos. 

(2) The proper reference system of a particle moving in the gravitational 
field is locally inertial (Einstein's interpretation of experiments in falling 
lifts). 

Relying on these facts, for all the particles in the gravitational field put 

Y = 0  (8.19) 

which after substitution into (8.6) accounting (8.5) and (6.31) gives 

g= A.r 

Whence, due to (6.29), we have 

(8.2o) 

being the well-known Einstein's equations of motion when written in 
coordinates. 

If following to Einstein the connection matrix is assumed symmetric 

r - - -  r (8.:22) 

then the formulas (6.38) state that gravitation manifests itself as curvature 
of  space-time without its torsion. It should be noted that equation (8.19) 
can be obtained from (8.10) immediately if in that equation one puts 

c ~ 0 ( 8 . 2 3 )  

Assumption (8.23) about zero 'gravitational charge" for all the bodies does 
not in the least contradict the facts mentioned. Moreover it is likely to 
follow from them. 

Hence, despite their differerit nature, the influence of the electro- 
magnetism and gravitation on space-time can be looked at as the general 
property ofthese fields which show themselves up in one or other distortions 
of  space-time symmetries. In this sense one can speak about a unified 
classical, electromagnetic-gravitational, field under influence of which 
space-time undergoes curvature and torsion. In geometrical interpretation 
the unified field is a field of local basis above space-time. The reciprocal 
twist of  basis belonging to adjacent space-time points can be divided into 
two parts, deformation and rotation, which would correspond to the 

2 6  

(8.21) 
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division of the unified classical field into two components: gravitation and 
electromagnetism. 

9. Su,nm y 
1. The concept of 'holonomy" can be effectively used in the theory of 

arbitrary topological groups. 
2. Group deformation is described by nonlinear mapping of holonomy 

algebra (i.e. by non-holonomic mapping of group formation). 
3. The operations of union and intersection of subgroups define the 

subgroups structure which can be deformed a~ well. 
4. Relative geometry of topological groups describes a deviation from 

geometry of the holonomic group of the same topological class. 
5. Relative geometry of a deformed Poincare group is characterised by 

curvature and torsion caused by breakdown of holonomicity in the Lorentz 
subgroup and translations corresponding. 

6. The basic space possesses torsion in the rotated and accelerated 
reference system. 

7. The classical fields deform the Poincare group. 
8. Holonomy algebra, found from the equations of motion, allows 

consideration of gravitation as a curvature and electromagnetism as a 
torsion of space-time. 

9. The different nature of these fields is evident immediately from the 
equations of motion, since the electromagnetic field deals with relative 
motion of various charges, but the gravitational field concerns relative 
motion of free bodies. 

10. Nevertheless, the unification ofclassical fields into the unified theory, 
with the help of our formalism, becomes as natural as merging of the 
rotation group and the translation group into a unified group of inhomo- 
geneous transformatiofis. _~ 

11. The results obtained offer possibilities to describe an arbitrary (not 
only classical) field in the group-theoretical language through the terms of 

relative geometry (holonomy algebra, metrics, etc.) of corresponding 
deformation of topologically given Poincare group represeatation. 

Appendix 

Discussion of group differentiation rules used in the text: 
From the definition of the group differential 

ffi o(x + dx) (Aa) 

it follows that 
O(X + ~ )  = a~(X). C(X) (A.2) 

The second group differential is defined analogously. 

BdG(x) = dG(x + BX) dG-~(X) (A.3) 
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It is useful to apply the truncated differentials of the group: 

dG(x)--  E + dG(x) (A.4) 

sac(x) = E + S~G(x) (A.S) 

which for small d x may be put as: 

~ ( x )  ~ C,(x) dx' (A.6) 

whence 

s ~  ~ ~(~, dx~ = c , . ,#x'  ~x ~ + c ,  ~dx' (A.7) 

where G~., should be called a derivative of the generators in the direction k. 
With accuracy up to the second-order we have 

~JG.dG= E +  8G + dG + 8G.dG (A.8) 

&IG.doG = E +  ~dG + dOG (A.9) 

whence to the same accuracy one obtains 

dG -l = E -  dG + dG 2 (,4,.10) 

~dG -I = E -  ~dG (A.I 1) 

Let us now ,.Lse K(X), F(X), G(X) as elements of" a group defined on a 
parametric space so that 

K0c) -- F ~ . ~ ( x )  (A.12) 

By the definition (A.I): 

dK(X) -- [F(x + dX). G(X + dx)]. [F(x). G(X)]-~ (A. 13) 

whence accounting (A.2) and (A.4) we obtain a formula for differential of 
product 

d K =  dF.~ FdGF -z (A.14) 

If  F - -  G -! then K -  = E and 

dG-'  = - G  -t  dGG (A. ! 5) 

yielding (6.31) in view of(A.10) with first-order accuracy. 
Repeated differentiation of (A.3) results in a formula: 

a d K = a d F  + F{i~dG + [OF, riG]} F -I (A.16) 

and [SF, dG] -- 8F.dG - dG.3F. 
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